
Django SQL Explorer

May 25, 2021

Contents:

1 SQL Explorer 3
1.1 Features . 6
1.2 Change Log . 9
1.3 Install . 15
1.4 Dependencies . 16
1.5 Settings . 19
1.6 Indices and tables . 20

i

ii

Django SQL Explorer

Contents: 1

https://django-sql-explorer.readthedocs.io/en/latest/?badge=latest
https://travis-ci.org/groveco/django-sql-explorer
https://pypi.python.org/pypi/django-sql-explorer/
https://pypi.python.org/pypi/django-sql-explorer/
https://pypi.python.org/pypi/django-sql-explorer/

Django SQL Explorer

2 Contents:

CHAPTER 1

SQL Explorer

SQL Explorer aims to make the flow of data between people fast, simple, and confusion-free. It is a Django-based
application that you can add to an existing Django site, or use as a standalone business intelligence tool.

Quickly write and share SQL queries in a simple, usable SQL editor, preview the results in the browser, share links,
download CSV, JSON, or Excel files (and even expose queries as API endpoints, if desired), and keep the information
flowing!

Comes with support for multiple connections, to many different SQL database types, a schema explorer, query history
(e.g. lightweight version control), a basic security model, in-browser pivot tables, and more.

SQL Explorer values simplicity, intuitive use, unobtrusiveness, stability, and the principle of least surprise.

SQL Explorer is inspired by any number of great query and reporting tools out there.

The original idea came from Stack Exchange’s Data Explorer, but also owes credit to similar projects like Redash and
Blazer.

Sql Explorer is MIT licensed, and pull requests are welcome.

A view of a query

3

http://data.stackexchange.com/stackoverflow/queries
http://redash.io/
https://github.com/ankane/blazer

Django SQL Explorer

Viewing all queries

Quick access to DB schema info

4 Chapter 1. SQL Explorer

Django SQL Explorer

Snapshot query results to S3 & download as csv

5

Django SQL Explorer

1.1 Features

1.1.1 Security

• Let’s not kid ourselves - this tool is all about giving people access to running SQL in production. So if that
makes you nervous (and it should) - you’ve been warned. Explorer makes an effort to not allow terrible things
to happen, but be careful! It’s recommended you setup read-only roles for each of your database connections
and only use these particular connections for your queries through the EXPLORER_CONNECTIONS setting.

• Explorer supports two different permission checks for users of the tool. Users passing the
EXPLORER_PERMISSION_CHANGE test can create, edit, delete, and execute queries. Users who do not
pass this test but pass the EXPLORER_PERMISSION_VIEW test can only execute queries. Other users cannot
access any part of Explorer. Both permission groups are set to is_staff by default and can be overridden in your
settings file.

• Enforces a SQL blacklist so destructive queries don’t get executed (delete, drop, alter, update etc). This is not
bulletproof and it’s recommended that you instead configure a read-only database role, but when not possible
the blacklist provides reasonable protection.

1.1.2 Easy to get started

• Built on Django’s ORM, so works with Postgresql, Mysql, and Sqlite. And, between you and me, it works fine
on RedShift as well.

• Small number of dependencies.

• Just want to get in and write some ad-hoc queries? Go nuts with the Playground area.

1.1.3 Snapshots

• Tick the ‘snapshot’ box on a query, and Explorer will upload a .csv snapshot of the query results to S3. Configure
the snapshot frequency via a celery cron task, e.g. for daily at 1am:

'explorer.tasks.snapshot_queries': {
'task': 'explorer.tasks.snapshot_queries',
'schedule': crontab(hour=1, minute=0)

}

• Requires celery, obviously. Also uses djcelery and tinys3. All of these deps are optional and can be installed
with pip install -r optional-requirements.txt

• The checkbox for opting a query into a snapshot is ALL THE WAY on the bottom of the query view (underneath
the results table).

• You must also have the setting EXPLORER_TASKS_ENABLED enabled.

1.1.4 Email query results

• Click the email icon in the query listing view, enter an email address, and the query results (zipped .csv) will be
sent to you asynchronously. Very handy for long-running queries.

6 Chapter 1. SQL Explorer

Django SQL Explorer

1.1.5 Parameterized Queries

• Use $$foo$$ in your queries and Explorer will build a UI to fill out parameters. When viewing a query like
SELECT * FROM table WHERE id=$$id$$, Explorer will generate UI for the id parameter.

• Parameters are stashed in the URL, so you can share links to parameterized queries with colleagues

• Use $$paramName:defaultValue$$ to provide default values for the parameters.

1.1.6 Schema Helper

• /explorer/schema/<connection-alias> renders a list of your table and column names + types that
you can refer to while writing queries. Apps can be excluded from this list so users aren’t bogged down with
tons of irrelevant tables. See settings documentation below for details.

• This is available quickly as a sidebar helper while composing queries (see screenshot)

• Quick search for the tables you are looking for. Just start typing!

• Explorer uses Django DB introspection to generate the schema. This can sometimes be slow, as it issues a
separate query for each table it introspects. Therefore, once generated, Explorer caches the schema information.
There is also the option to generate the schema information asyncronously, via Celery. To enable this, make sure
Celery is installed and configured, and set EXPLORER_ENABLE_TASKS and EXPLORER_ASYNC_SCHEMA
to True.

1.1.7 Template Columns

• Let’s say you have a query like ‘select id, email from user’ and you’d like to quickly drill through to the profile
page for each user in the result. You can create a “template” column to do just that.

• Just set up a template column in your settings file:

EXPLORER_TRANSFORMS = [('user', '<a href="https://yoursite.com/profile/{0}/
">{0}')]

• And change your query to SELECT id AS "user", email FROM user. Explorer will match the
“user” column alias to the transform and merge each cell in that column into the template string. Cool!

• Note you must set EXPLORER_UNSAFE_RENDERING to True if you want to see rendered HTML (vs string
literals) in the output. And be aware of the implications of enabling that setting.

1.1.8 Pivot Table

• Go to the Pivot tab on query results to use the in-browser pivot functionality (provided by Pivottable JS).

• Hit the link icon on the top right to get a URL to recreate the exact pivot setup to share with colleagues.

1.1.9 Query Logs

• Explorer will save a snapshot of every query you execute so you can recover lost ad-hoc queries, and see what
you’ve been querying.

• This also serves as cheap-and-dirty versioning of Queries, and provides the ‘run count’ property and average
duration in milliseconds, by aggregating the logs.

1.1. Features 7

Django SQL Explorer

• You can also quickly share playground queries by copying the link to the playground’s query log record – look
on the top right of the sql editor for the link icon.

• If Explorer gets a lot of use, the logs can get beefy. explorer.tasks contains the ‘truncate_querylogs’ task that
will remove log entries older than <days> (30 days and older in the example below).

'explorer.tasks.truncate_querylogs': {
'task': 'explorer.tasks.truncate_querylogs',
'schedule': crontab(hour=1, minute=0),
'kwargs': {'days': 30}

}

1.1.10 Multiple Connections

• Have data in more than one database? No problemo. Just set up multiple Django database connections, register
them with Explorer, and you can write, save, and view queries against all of your different data sources. Com-
patible with any database support by Django. Note that the target database does not have to contain any Django
schema, or be related to Django in any way. See connections.py for more documentation on multi-connection
setup.

1.1.11 Power tips

• On the query listing page, focus gets set to a search box so you can just navigate to /explorer and start typing
the name of your query to find it.

• Quick search also works after hitting “Show Schema” on a query view.

• Command+Enter and Ctrl+Enter will execute a query when typing in the SQL editor area.

• Hit the “Format” button to format and clean up your SQL (this is non-validating – just formatting).

• Use the Query Logs feature to share one-time queries that aren’t worth creating a persistent query for. Just
run your SQL in the playground, then navigate to /logs and share the link (e.g. /explorer/play/?
querylog_id=2428)

• Click the ‘history’ link towards the top-right of a saved query to filter the logs down to changes to just that query.

• If you need to download a query as something other than csv but don’t want to globally change delimiters via
settings.EXPLORER_CSV_DELIMETER, you can use /query/download?delim=| to get a pipe (or
whatever) delimited file. For a tab-delimited file, use delim=tab. Note that the file extension will remain .csv

• If a query is taking a long time to run (perhaps timing out) and you want to get in there to optimize it, go to
/query/123/?show=0. You’ll see the normal query detail page, but the query won’t execute.

• Set env vars for EXPLORER_TOKEN_AUTH_ENABLED=TRUE and EXPLORER_TOKEN=<SOME TOKEN>
and you have an instant data API. Just:

curl --header "X-API-TOKEN: <TOKEN>" https://www.your-site.com/explorer/
<QUERY_ID>/stream?format=csv

You can also pass the token with a query parameter like this:

curl https://www.your-site.com/explorer/<QUERY_ID>/stream?
format=csv&token=<TOKEN>

8 Chapter 1. SQL Explorer

Django SQL Explorer

1.2 Change Log

This document records all notable changes to django-sql-explorer. This project adheres to Semantic Versioning.

1.2.1 2.1.0 (2021-01-13)

• BREAKING CHANGE: request object now passed to EXPLORER_PERMISSION_CHANGE and
EXPLORER_PERMISSION_VIEW (#417 to fix #396)

Major Changes

• #413: Static assets now served directly from the application, not CDN. (#418 also)

• #414: Better blacklist checking - Fix #371 and #412

• #415: Fix for MySQL following change for Oracle in #337

Minor Changes

• #370: Get the CSRF cookie name from django instead of a hardcoded value

• #410 and #416: Sphinx docs

• #420: Formatting change in templates

• #424: Collapsable SQL panel

• #425: Ensure a Query object contains SQL

1.2.2 2.0.0 (2020-10-09)

• BREAKING CHANGE: #403: Dropping support for EOL Python 2.7 and 3.5

Major Changes

• #404: Add support for Django 3.1 and drop support for (EOL) <2.2

• #408: Refactored the application, updating the URLs to use path and the views into a module

Minor Changes

• #334: Django 2.1 support

• #337: Fix Oracle query failure caused by TextField in a group by clause

• #345: Added (some) Chinese translation

• #366: Changes to Travis django versions

• #372: Run queries as atomic requests

• #382: Django 2.2 support

• #383: Typo in the README

• #385: Removed deprecated render_to_response usage

• #386: Bump minimum django version to 2.2

• #387: Django 3 support

• #390: README formatting changes

• #393: Added option to install XlsxWriter as an extra package

1.2. Change Log 9

https://github.com/groveco/django-sql-explorer
https://semver.org/
https://github.com/groveco/django-sql-explorer/pull/417
https://github.com/groveco/django-sql-explorer/issues/396
https://github.com/groveco/django-sql-explorer/pull/413
https://github.com/groveco/django-sql-explorer/pull/418
https://github.com/groveco/django-sql-explorer/pull/414
https://github.com/groveco/django-sql-explorer/issues/371
https://github.com/groveco/django-sql-explorer/issues/412
https://github.com/groveco/django-sql-explorer/pull/415
https://github.com/groveco/django-sql-explorer/pull/337
https://github.com/groveco/django-sql-explorer/pull/370
https://github.com/groveco/django-sql-explorer/pull/410
https://github.com/groveco/django-sql-explorer/pull/416
https://github.com/groveco/django-sql-explorer/pull/420
https://github.com/groveco/django-sql-explorer/pull/424
https://github.com/groveco/django-sql-explorer/pull/425
https://www.python.org/doc/sunset-python-2/
https://pythoninsider.blogspot.com/2020/10/python-35-is-no-longer-supported.html
https://github.com/groveco/django-sql-explorer/pull/404
https://github.com/groveco/django-sql-explorer/pull/408
https://github.com/groveco/django-sql-explorer/pull/334
https://github.com/groveco/django-sql-explorer/pull/337
https://github.com/groveco/django-sql-explorer/pull/345
https://github.com/groveco/django-sql-explorer/pull/366
https://github.com/groveco/django-sql-explorer/pull/372
https://github.com/groveco/django-sql-explorer/pull/382
https://github.com/groveco/django-sql-explorer/pull/383
https://github.com/groveco/django-sql-explorer/pull/385
https://github.com/groveco/django-sql-explorer/pull/386
https://github.com/groveco/django-sql-explorer/pull/387
https://github.com/groveco/django-sql-explorer/pull/390
https://github.com/groveco/django-sql-explorer/pull/393

Django SQL Explorer

• #397: Bump patch version of django 2.2

• #406: Show some love to the README

• Fix #341: PYC files excluded from build

1.2.3 1.1.3 (2019-09-23)

• #347: URL-friendly parameter encoding

• #354: Updating dependency reference for Python 3 compatibility

• #357: Include database views in list of tables

• #359: Fix unicode issue when generating migration with py2 or py3

• #363: Do not use “message” attribute on exception

• #368: Update EXPLORER_SCHEMA_EXCLUDE_TABLE_PREFIXES

Minor Changes

• release checklist included in repo

• readme updated with new screenshots

• python dependencies/optional-dependencies updated to latest (six, xlsxwriter, factory-boy, sqlparse)

1.2.4 1.1.2 (2018-08-14)

• Fix #269

• Fix bug when deleting query

• Fix bug when invalid characters present in Excel worksheet name

Major Changes

• Django 2.0 compatibility

• Improved interface to database connection management

Minor Changes

• Documentation updates

• Load images over same protocol as originating page

1.2.5 1.1.1 (2017-03-21)

• Fix #288 (incorrect import)

1.2.6 1.1.0 (2017-03-19)

• BREAKING CHANGE: EXPLORER_DATA_EXPORTERS setting is now a list of tuples instead of a dictio-
nary. This only affects you if you have customized this setting. This was to preserve ordering of the export
buttons in the UI.

• BREAKING CHANGE: Values from the database are now escaped by default. Disable this behavior (enabling
potential XSS attacks) with the EXPLORER_UNSAFE_RENDERING setting.

10 Chapter 1. SQL Explorer

https://github.com/groveco/django-sql-explorer/pull/397
https://github.com/groveco/django-sql-explorer/pull/406
https://github.com/groveco/django-sql-explorer/issues/341
https://github.com/groveco/django-sql-explorer/pull/347
https://github.com/groveco/django-sql-explorer/pull/354
https://github.com/groveco/django-sql-explorer/pull/357
https://github.com/groveco/django-sql-explorer/pull/359
https://github.com/groveco/django-sql-explorer/pull/363
https://github.com/groveco/django-sql-explorer/pull/368
https://github.com/groveco/django-sql-explorer/issues/269
https://github.com/groveco/django-sql-explorer/issues/288

Django SQL Explorer

Major Changes

• Django 1.10 and 2.0 compatibility

• Theming & visual updates

• PDF export

• Query-param based authentication (#254)

• Schema built via SQL querying rather than Django app/model introspection. Paves the way for the tool to be
pointed at any DB, not just Django DBs

Minor Changes

• Switched from TinyS3 to Boto (will switch to Boto3 in next release)

• Optionally show row numbers in results preview pane

• Full-screen view (icon on top-right of preview pane)

• Moved ‘open in playground’ to icon on top-right on SQL editor

• Save-only option (does not execute query)

• Show the time that the query was rendered (useful if you’ve had a tab open a while)

1.2.7 1.0.0 (2016-06-16)

• BREAKING CHANGE: Dropped support for Python 2.6. See .travis.yml for test matrix.

• BREAKING CHANGE: The ‘export’ methods have all changed. Those these weren’t originally designed to
be external APIs, folks have written consuming code that directly called export code.

If you had code that looked like:

explorer.utils.csv_report(query)

You will now need to do something like:

explorer.exporters.get_exporter_class('csv')(query).
get_file_output()

• There is a new export system! v1 is shipping with support for CSV, JSON, and Excel (xlsx). The availablility
of these can be configured via the EXPLORER_DATA_EXPORTERS setting. * Note that for Excel export to
work, you will need to install xlsxwriter from optional-requirements.txt.

• Introduced Query History link. Find it towards the top right of a saved query.

• Front end performance improvements and library upgrades.

• Allow non-admins with permission to log into explorer.

• Added a proper test_project for an easier entry-point for contributors, or folks who want to kick the tires.

• Loads of little bugfixes.

1.2.8 0.9.2 (2016-02-02)

• Fixed readme issue (.1) and setup.py issue (.2)

1.2. Change Log 11

https://github.com/groveco/django-sql-explorer/pull/254

Django SQL Explorer

1.2.9 0.9.1 (2016-02-01)

Major changes

• Dropped support for Django 1.6, added support for Django 1.9. See .travis.yml for test matrix.

• Dropped charted.js & visualization because it didn’t work well.

• Client-side pivot tables with pivot.js. This is ridiculously cool!

Minor (but awesome!) changes

• Cmd-/ to comment/uncomment a block of SQL

• Quick ‘shortcut’ links to the corresponding querylog to more quickly share results. Look at the top-right of the
editor. Also works for playground!

• Prompt for unsaved changes before navigating away

• Support for default parameter values via $$paramName:defaultValue$$

• Optional Celery task for truncating query logs as entries build up

• Display historical average query runtime

• Increased default number of rows from 100 to 1000

• Increased SQL editor size (5 additional visible lines)

• CSS cleanup and streamlining (making better use of foundation)

• Various bugfixes (blacklist not enforced on playground being the big one)

• Upgraded front-end libraries

• Hide Celery-based features if tasks not enabled.

1.2.10 0.8.0 (2015-10-21)

• Snapshots! Dump the csv results of a query to S3 on a regular schedule. More details in readme.rst under
‘features’.

• Async queries + email! If you have a query that takes a long time to run, execute it in the background and
Explorer will send you an email with the results when they are ready. More details in readme.rst

• Run counts! Explorer inspects the query log to see how many times a query has been executed.

• Column Statistics! Click the . . . on top of numeric columns in the results pane to see min, max, avg, sum, count,
and missing values.

• Python 3! * Django 1.9!

• Delimiters! Export with delimiters other than commas.

• Listings respect permissions! If you’ve given permission to queries to non-admins, they will see only those
queries on the listing page.

1.2.11 0.7.0 (2015-02-18)

• Added search functionality to schema view and explorer view (using list.js).

• Python 2.6 compatibility.

• Basic charts via charted (from Medium via charted.co).

12 Chapter 1. SQL Explorer

Django SQL Explorer

• SQL formatting function.

• Token authentication to retrieve csv version of queries.

• Fixed south_migrations packaging issue.

• Refactored front-end and pulled CSS and JS into dedicated files.

1.2.12 0.6.0 (2014-11-05)

• Introduced Django 1.7 migrations. See readme.rst for info on how to run South migrations if you are not on
Django 1.7 yet.

• Upgraded front-end libraries to latest versions.

• Added ability to grant selected users view permissions on selected queries via the
EXPLORER_USER_QUERY_VIEWS parameter

• Example usage: EXPLORER_USER_QUERY_VIEWS = {1: [3,4], 2:[3]}

• This would grant user with PK 1 read-only access to query with PK=3 and PK=4 and user 2 access to query 3.

• Bugfixes

• Navigating to an explorer URL without the trailing slash now redirects to the intended page (e.g. /logs ->
/logs/)

• Downloading a .csv and subsequently re-executing a query via a keyboard shortcut (cmd+enter) would re-submit
the form and re-download the .csv. It now correctly just refreshes the query.

• Django 1.7 compatibility fix

1.2.13 0.5.1 (2014-09-02)

Bugfixes

• Created_by_user not getting saved correctly

• Content-disposition .csv issue

• Issue with queries ending in ...like '%... clauses

• Change the way customer user model is referenced

• Pseudo-folders for queries. Use “Foo * Ba1”, “Foo * Bar2” for query names and the UI will build a little “Foo”
pseudofolder for you in the query list.

1.2.14 0.5.0 (2014-06-06)

• Query logs! Accessible via explorer/logs/. You can look at previously executed queries (so you don’t,
for instance, lose that playground query you were working, or have to worry about mucking up a recorded
query). It’s quite usable now, and could be used for versioning and reverts in the future. It can be accessed at
explorer/logs/

• Actually captures the creator of the query via a ForeignKey relation, instead of just using a Char field.

• Re-introduced type information in the schema helpers.

• Proper relative URL handling after downloading a query as CSV.

1.2. Change Log 13

Django SQL Explorer

• Users with view permissions can use query parameters. There is potential for SQL injection here. I think about
the permissions as being about preventing users from borking up queries, not preventing them from viewing
data. You’ve been warned.

• Refactored params handling for extra safety in multi-threaded environments.

1.2.15 0.4.1 (2014-02-24)

• Renaming template blocks to prevent conflicts

1.2.16 0.4 (2014-02-14 Happy Valentine’s Day!)

• Templatized columns for easy linking

• Additional security config options for splitting create vs. view permissions

• Show many-to-many relation tables in schema helper

1.2.17 0.3 (2014-01-25)

• Query execution time shown in query preview

• Schema helper available as a sidebar in the query views

• Better defaults for sql blacklist

• Minor UI bug fixes

1.2.18 0.2 (2014-01-05)

• Support for parameters

• UI Tweaks

• Test coverage

1.2.19 0.1.1 (2013-12-31)

Bug Fixes

• Proper SQL blacklist checks

• Downloading CSV from playground

1.2.20 0.1 (2013-12-29)

Initial Release

14 Chapter 1. SQL Explorer

Django SQL Explorer

1.3 Install

Requires Python 3.6 or higher. Requires Django 2.2 or higher.

Set up a Django project with the following:

$ pip install django
$ django-admin startproject project

More information in the django tutorial.

Install with pip from pypi:

pip install django-sql-explorer

If you would also like to support downloading Excel files install with the dependency using:

pip install django-sql-explorer[xls]

Add to your INSTALLED_APPS, located in the settings.py file in your project folder:

INSTALLED_APPS = (
...,
'explorer',
...

)

Add the following to your urls.py (all Explorer URLs are restricted via the EXPLORER_PERMISSION_VIEW and
EXPLORER_PERMISSION_CHANGE settings. See Settings section below for further documentation.):

from django.urls import path

urlpatterns = [
...
path('explorer/', include('explorer.urls')),
...

]

Configure your settings to something like:

EXPLORER_CONNECTIONS = { 'Default': 'readonly' }
EXPLORER_DEFAULT_CONNECTION = 'readonly'

The first setting lists the connections you want to allow Explorer to use. The keys of the connections dictionary
are friendly names to show Explorer users, and the values are the actual database aliases used in settings.
DATABASES. It is highly recommended to setup read-only roles in your database, add them in your project’s
DATABASES setting and use these read-only cconnections in the EXPLORER_CONNECTIONS.

If you want to quickly use django-sql-explorer with the existing default connection and know what you are doing (or
you are on development), you can use the following settings:

EXPLORER_CONNECTIONS = { 'Default': 'default' }
EXPLORER_DEFAULT_CONNECTION = 'default'

Finally, run migrate to create the tables:

python manage.py migrate

You can now browse to https://yoursite/explorer/ and get exploring!

1.3. Install 15

https://docs.djangoproject.com/en/3.1/intro/tutorial01/
https://yoursite/explorer/

Django SQL Explorer

There are a handful of features (snapshots, emailing queries) that rely on Celery and the dependencies in optional-
requirements.txt. If you have Celery installed, set EXPLORER_TASKS_ENABLED=True in your settings.py to en-
able these features.

1.4 Dependencies

An effort has been made to keep the number of dependencies to a minimum.

1.4.1 Python

Name Version License
sqlparse 0.4.0 BSD

• sqlparse is used for SQL formatting

Python - Optional Dependencies

Name Version License
celery >=3.1,<4 BSD
django-celery >=3.3.1 BSD
Factory Boy >=3.1.0 MIT
xlsxwriter >=1.3.6 BSD
boto >=2.49 MIT

• Factory Boy is required for tests

• celery is required for the ‘email’ feature, and for snapshots

• boto is required for snapshots

• xlsxwriter is required for Excel export (csv still works fine without it)

JavaScript

Name Version License
Twitter Boostrap 3.3.6 MIT
jQuery 2.1.4 MIT
jQuery Cookie 1.4.1 MIT
jQuery UI 1.11.4 MIT
Underscore 1.7.0 MIT
Codemirror 5.15.2 MIT
floatThead 1.4.0 MIT
list.js 1.2.0 MIT
pivottable.js 2.0.2 MIT

• All are served locally, with jQuery UI being a custom build.

pivottable.js relies on jQuery UI but only for the Sortable method.

1.4.2 Tests

Factory Boy is needed if you’d like to run the tests, which can you do easily:

16 Chapter 1. SQL Explorer

https://github.com/andialbrecht/sqlparse/
http://www.celeryproject.org/
http://www.celeryproject.org/
https://github.com/rbarrois/factory_boy
http://xlsxwriter.readthedocs.io/
https://github.com/boto/boto
http://getbootstrap.com/
http://jquery.com/
https://github.com/carhartl/jquery-cookie
https://jqueryui.com
http://underscorejs.org/
http://codemirror.net/
http://mkoryak.github.io/floatThead/
http://listjs.com
http://nicolas.kruchten.com/pivottable/

Django SQL Explorer

python manage.py test

and with coverage:

coverage run --source='.' manage.py test

then:

coverage report

. . . 97%! Huzzah!

1.4.3 Running Locally

There is also a test_project that you can use to kick the tires. Just create a new virtualenv, cd into test_project
and run start.sh (or walk through the steps yourself) to get a test instance of the app up and running.

1.4. Dependencies 17

Django SQL Explorer

18 Chapter 1. SQL Explorer

Django SQL Explorer

1.5 Settings

Setting Description Default
EX-
PLORER_SQL_BLACKLIST

Disallowed words in SQL queries
to prevent destructive actions.

(‘ALTER’, ‘RENAME ‘, ‘DROP’, ‘TRUNCATE’, ‘IN-
SERT INTO’, ‘UPDATE’, ‘REPLACE’, ‘DELETE’,
‘ALTER’, ‘CREATE TABLE’, ‘SCHEMA’,
‘GRANT’, ‘OWNER TO’)

EX-
PLORER_SQL_WHITELIST

These phrases are allowed, even
though part of the phrase appears in
the blacklist.

(‘CREATED’, ‘UPDATED’,
‘DELETED’,’REGEXP_REPLACE’)

EX-
PLORER_DEFAULT_ROWS

The number of rows to show by de-
fault in the preview pane.

1000

EX-
PLORER_SCHEMA_INCLUDE_TABLE_PREFIXES

If not None, show schema only
for tables starting with these pre-
fixes. “Wins” if in conflict with
EXCLUDE

None # shows all tables

EX-
PLORER_SCHEMA_EXCLUDE_TABLE_PREFIXES

Don’t show schema for tables start-
ing with these prefixes, in the
schema helper.

(‘django.contrib.auth’, ‘django.contrib.contenttypes’,
‘django.contrib.sessions’, ‘django.contrib.admin’)

EX-
PLORER_SCHEMA_INCLUDE_VIEWS

Include database views False

EX-
PLORER_ASYNC_SCHEMA

Generate DB schema asyn-
chronously. Requires Celery and
EXPLORER_TASKS_ENABLED

False

EX-
PLORER_DEFAULT_CONNECTION

The name of the Django database
connection to use. Ideally set this
to a connection with read only per-
missions

None # Must be set for the app to work, as this is re-
quired

EX-
PLORER_CONNECTIONS

A dictionary of { ‘Friendly Name’:
‘django_db_alias’}.

{} # At a minimum, should be set to something like {
‘Default’: ‘readonly’ } or similar. See connections.py
for more documentation.

EX-
PLORER_PERMISSION_VIEW

Callback to check if the user is al-
lowed to view and execute stored
queries

lambda u: u.is_staff

EX-
PLORER_PERMISSION_CHANGE

Callback to check if the user is al-
lowed to add/change/delete queries

lambda u: u.is_staff

EX-
PLORER_TRANSFORMS

List of tuples like [(‘alias’, ‘Tem-
plate for {0}’)]. See features sec-
tion of this doc for more info.

[]

EX-
PLORER_RECENT_QUERY_COUNT

The number of recent queries to
show at the top of the query listing.

10

EX-
PLORER_GET_USER_QUERY_VIEWS

A dict granting view permissions
on specific queries of the form
{userId:[queryId, . . .], . . . }

{}

EX-
PLORER_TOKEN_AUTH_ENABLED

Bool indicating whether token-
authenticated requests should be
enabled. See “Power Tips”, above.

False

EX-
PLORER_TOKEN

Access token for query results. “CHANGEME”

EX-
PLORER_TASKS_ENABLED

Turn on if you want to use the snap-
shot_queries celery task, or email
report functionality in tasks.py

False

EX-
PLORER_S3_ACCESS_KEY

S3 Access Key for snapshot upload None

EX-
PLORER_S3_SECRET_KEY

S3 Secret Key for snapshot upload None

EX-
PLORER_S3_BUCKET

S3 Bucket for snapshot upload None

EX-
PLORER_FROM_EMAIL

The default ‘from’ address when
using async report email function-
ality

“django-sql-explorer@example.com”

EX-
PLORER_DATA_EXPORTERS

The export buttons to use. Default
includes Excel, so xlsxwriter from
optional-requirements.txt is needed

[(‘csv’, ‘explorer.exporters.CSVExporter’), (‘ex-
cel’, ‘explorer.exporters.ExcelExporter’), (‘json’,
‘explorer.exporters.JSONExporter’)]

EX-
PLORER_UNSAFE_RENDERING

Disable autoescaping for render-
ing values from the database. Be
wary of XSS attacks if querying
unknown data. . .

False

1.5. Settings 19

mailto:django-sql-explorer@example.com

Django SQL Explorer

1.6 Indices and tables

• genindex

• modindex

• search

20 Chapter 1. SQL Explorer

	SQL Explorer
	Features
	Change Log
	Install
	Dependencies
	Settings
	Indices and tables

